Same Day Delivery in Delhi* 9350849407
M

IGNOU BCS-54 Computer Oriented Numerical Techniques - Latest Solved Assignment

Sale!
1st Choice of IGNOU Students to Score High in IGNOU Exam

Get IGNOU BCS-54 Assignments Typed, Handwritten ready for Download in PDF for (Jul 24 - Jan 25, Jul 23 - Jan 24) in English.

  •  Helps save time and effort-really well
  •  Promises Good Marks in Less Time
  •  Answers that are verified and accurate
  •  Based on IGNOU Guidelines.
Also Buy Your Help Book or Bulk Assignments
SKU: N/A Categories: ,

BUY BCS-54 COMBO and Save upto 50%

BCS-51
BCS-52
BCS-53
BCS-54
BCS-55
Language : 
English
Semester : 
Year : 
675.00
1,350.00
Save 675.00

PLEASE MATCH YOUR ASSIGNMENT QUESTIONS ACCORDING TO YOUR SESSION

IGNOU BCS-54 (July 2024 – January 2025) Assignment Questions

Question 1.
(a) Explain each of the following concepts, along with at least one suitable example for each:
(i) Fixed-point number representation (ii) round-off error (iii) representation of zero as floating point number (iv) significant digits in a decimal number representation (v) normalized representation of a floating point number (vi) overflow
(b) Explain with suitable example that in computer arithmatics ( i.e., numbers represented in computer, with +, −, *, / as implemented in a computer) the multiplication operation( *) may


some computer numbers a, b and c
(c) Find out to how many decimal places the value 22/ 7 is accurate as an approximation of 3.14159265, where the latter is value of ╥, calculated up to 8 places after decimal ?
(d) Calculate a bound for the truncation error in approximating f(x) = sin x by sin (x) = x − x 3 / (fact 3) + x5 / (fact 5), where −1 =< x =< 1 and (fact n) denotes factorial of n
(e) Obtain Approximate the value of (3.7)—1, using first three terms of Taylor’s series expansion.

Question 2.
(a) Solve the system of equations
4 x1+ x2+ 2X3 = 16
2×1 + 5×2 + 3×3 = 19
3×1+ 2×2 − x3 = 12
using Gauss elimination method with partial pivoting.
(b) Perform four iterations (rounded to four decimal places) using
(i) Jacobi Method and
(ii) Gauss-Seidel method ,
for the following system of equations.


Which method gives better approximation to the exact solution?

Question 3.
(a) Determine the smallest roots of the following equation:
f(x) = x2cos (x) + sin (x) =0 to three significant digits using
(i) Regula-falsi method (ii) Newton Raphson method (iii) Bisection method (iv) Secant method

Question 4.
(a) Explain what is the role of interpolation in solving numerical problems?
(b) Express Δ3 f1 as a backward difference.
(c) Express Δ3 f1 as a central difference.
(d) For the following data develop difference table and find forward differences and backward differences

Question 5.
(a) By decinnial census, the population of a town was given below.
Year (x) : 1971 1981 1991 2001 2011
Population (y): 112 132 158 189 226 (in thousands)
(i) Using Stirling’s central difference formula, estimate the population for the year 2006
(ii) Using Newton’s forward formula, estimate the population for the year 1992.
(iii) Using Newton’s backward formula, estimate the population for the year 1980.

b) If values of the function f: x  y are given as f(1) = −32, f(4) = 08, f(5) = 52, f(7) = 167 find the Lagrange’s interpolation polynomial of f(x). Also, find f(3).
Question 6.
(a) Find the values of the first and second derivatives of f(x) at x = 76 from the following table. Use 0(h2) forward difference method. Also, find Truncation Error (TE) and actual errors.

Question 7.
(a) Compute the value of the integral

Rectangular Rule (ii) Trapezoidal Rule and then (iii) Simpson’s 1/3 Rule

 

IGNOU BCS-54 (July 2023 – January 2024) Assignment Questions

Q1. (a) Find floating point representation, if possible normalized, in the 4-digit mantissa, two digit exponent, if necessary use approximation for each of the following numbers:
(i) 27.94 (ii) -0.00943 (iii) -6781014 (iv) 0.0644321
Also, find absolute error, if any, in each
(b) Convert the decimal integer -465 to binary using both the methods (as shown in Pg No:16 of Block-1). Show all the steps.
(c) Convert the number given as binary fraction –(0.101110101)2 to decimal.
(d) Find the sum of the two floating numbers x1=0.1364X101 and x2=0.7342X10-1. Further express the result in normal form, using (i) Chopping (ii) Rounding. Also, find the absolute error.

Q2. (a) Solve the system of equations
2 x + y + z = 3
x + 3y + 3z = 4
x – 4y + 2z = 9
using Gauss elimination method with partial pivoting. Show all the steps.
(b) Perform four iterations (rounded to four decimal places) using
(i) Jacobi Method and
(ii) Gauss-Seidel method ,
for the following system of equations

Which method gives better approximation to the exact solution?
Q3. Determine the smallest positive root of the following equation:
f(x) ≡ x3 – 9×2 – x + 9 = 0
to three significant digits using
(a) Regula-falsi method (b) Newton-Raphson method
(c) Bisectionmethod (d) Secant method
Q4. (a) Find Lagrange’s interpolating polynomial for the following data. Hence obtain the value of f(4).

(b) Using the inverse Lagrange’s interpolation, find the value of x when y=3 for the following data:

Q5. (a) The population of a country for the last 25 years is given in the following table:

(i) Using Stirling’s central difference formula, estimate the populationfor the year 2007
(ii) Using Newton’s forward formula, estimate the population for theyear 1998.
(iii) Using Newton’s backward formula, estimate the population for theyear 2013.
(b) Derive the relationship for the operators δ in terms of E.

Q6. (a) Find the values of the first and second derivatives of y = f(x) for x=2.1 using the following table. Use forward difference method. Also, find Truncation Error (TE) and actual errors.

(b) Find the values of the first and second derivatives of y = f(x) for x=2.1 from the following table using Lagrange’s interpolation formula. Compare the results with (a) part above.

Q7. Compute the value of the integral

By taking 8 equal subintervals using (a) Trapezoidal Rule and then (b) Simpson’s 1/3 Rule. Compare the result with the actual value.

BCS-54 Assignments Details

University : IGNOU (Indira Gandhi National Open University)
Title :Computer Oriented Numerical Techniques
Language(s) : English
Code : BCS-54
Degree :
Subject : Mathematics
Course : Core Courses (CC)
Author : Gullybaba.com Panel
Publisher : Gullybaba Publishing House Pvt. Ltd.

IGNOU BCS-54 (Jul 24 - Jan 25, Jul 23 - Jan 24) - Solved Assignment

Are you looking to download a PDF soft copy of the Solved Assignment BCS-54 – Computer Oriented Numerical Techniques Then GullyBaba is the right place for you. We have the Assignment available in Urdu language. This particular Assignment references the syllabus chosen for the subject of English, for the Jul 24 - Jan 25, Jul 23 - Jan 24 session. The code for the assignment is BCS-54 and it is often used by students who are enrolled in the BCA, IGNOU Solved Assignments Degree. Once students have paid for the Assignment, they can Instantly Download to their PC, Laptop or Mobile Devices in soft copy as a PDF format. After studying the contents of this Assignment, students will have a better grasp of the subject and will be able to prepare for their upcoming tests.

Assignment Submission End Date-upto

The IGNOU open learning format requires students to submit study Assignments. Here is the final end date of the submission of this particular assignment according to the university calendar.

  • 30th April (if Enrolled in the June Exams)
  • 31st October (if Enrolled in the December Exams).

What’s Included

In this section you can find other relevant information related to the Assignment you are looking at. It will give you an idea of what to expect when downloading a PDF soft copy from GullyBaba.

  • All Solved Answers By IGNOU Experts.
  • Available for 3 Times for Download.
  • Downloadable Soft Copy in PDF.
  • Print Ready Format: A4 (21 x 29 x .20 cm (Width x Length x Height)
Help
Back to Top $

My Cart

Your Last Viewed Product

Your Last Viewed Product

Cart Abandonment Popup